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Detection of untreated sewage discharges to watercourses
using machine learning
Peter Hammond 1✉, Michael Suttie 2, Vaughan T. Lewis3, Ashley P. Smith4 and Andrew C. Singer 1

Monitoring and regulating discharges of wastewater pollution in water bodies in England is the duty of the Environment Agency.
Identification and reporting of pollution events from wastewater treatment plants is the duty of operators. Nevertheless, in 2018,
over 400 sewage pollution incidents in England were reported by the public. We present novel pollution event reporting
methodologies to identify likely untreated sewage spills from wastewater treatment plants. Daily effluent flow patterns at two
wastewater treatment plants were supplemented by operator-reported incidents of untreated sewage discharges. Using machine
learning, known spill events served as training data. The probability of correctly classifying a randomly selected pair of ‘spill’ and
‘no-spill’ effluent patterns was above 96%. Of 7160 days without operator-reported spills, 926 were classified as involving a ‘spill’.
The analysis also suggests that both wastewater treatment plants made non-compliant discharges of untreated sewage between
2009 and 2020. This proof-of-principle use of machine learning to detect untreated wastewater discharges can help water
companies identify malfunctioning treatment plants and inform agencies of unsatisfactory regulatory oversight. Real-time, open
access flow and alarm data and analytical approaches will empower professional and citizen scientific scrutiny of the frequency and
impact of untreated wastewater discharges, particularly those unreported by operators.
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INTRODUCTION
The Environment Agency (EA) of England and the Water Services
Regulation Authority of England and Wales (Ofwat) are, respec-
tively, the environmental and economic regulators of the water
sector. In recent years, there have been increasingly significant
financial penalties and criminal prosecutions following major
incidents of sewage pollution of watercourses1–7. In 2018, there
were 48 category 1&2 (‘major’&‘serious’) and 1527 category 3
(‘minimal’) pollution incidents impacting river water quality
related to sewerage networks and Waste Water Treatment Plants
(WWTPs) in England1,8. Individual WWTP operators self-reported
between 62% and 84% of identified pollution incidents in England
in 2018; the public and third parties were responsible for reporting
the remaining 3951.
The non-trivial role of public reporting of pollution incidents in

England reveals that: (1) operators may significantly under-report
pollution incidents; (2) the public, unknowingly, plays an
important role in water industry oversight; and (3) annual
reporting of wastewater pollution incidents is very likely
incomplete9. Uncertainty regarding the frequency, duration
and impact of wastewater pollution incidents perpetuates the
gap in evidence needed to inform intervention, capital invest-
ment, and prosecution. Here, we have applied machine learning
(ML) techniques to leverage available data streams to highlight
putative sewage pollution incidents. We also employed rainfall,
river flow and WWTP alarm data to contextualise potential
polluting effects and possible non-compliance with EA permits
to discharge untreated sewage.
Environmental Information Regulation (EIR) requests were used,

under UK regulations enacting European Council Directive 2003/4/
CE10, to obtain daily treated effluent flow patterns and event
duration monitoring (EDM) data, the latter being start and stop
times of untreated wastewater discharges from storm tanks.

During periods of rainfall, storm tanks are employed at many
WWTPs to hold excess sewage temporarily when inflow is swollen
by surface water runoff. The contents of storm tanks are required,
under permits to discharge to watercourses, to be transferred for
treatment as soon as inflow recedes and WWTP capacity returns.
During heavy rainfall, storm tank capacity can be breached
leading to permitted spills of untreated, but partially screened,
sewage via storm tank overflows, resulting in pollution of
receiving watercourses.
In 2013, the UK Department for Food, Rural and Agriculture

(DEFRA) declared that, by 2020, EDM devices should be installed
on the “vast majority” of combined sewer overflows (CSOs) on
sewerage networks, WWTP storm tank overflows, and sewage
pumping station (SPS) emergency overflows in England and
Wales. Although the term storm tank overflow is commonly used
by the Water Industry, the EA and in discharge permits, by being
subject to a combination of groundwater, surface runoff and
wastewater, it clearly is a combined sewer overflow.
Since 2016, the number and length of EDM detected spills have

been reported annually to the EA by WWTP operators. In 2020,
EDM reports were made for about 70% of such overflows. A
discharge of untreated sewage during exceptional rainfall would
be compliant with a permit and until the introduction of EDM
devices would not have needed self-reporting to the EA by an
operator. During periods of sub-exceptional rainfall, such dis-
charges are non-compliant and potentially illegal under UK and
European law11,12.
Operators of WWTPs are also required to continue to treat a

minimum flow of sewage that is at least a plant-specific “storm
overflow rate” defined in its EA permit, even when excess flow is
diverted to, or spilled from, a storm tank. Therefore, it would also
be non-compliant for a storm tank to receive untreated sewage or
to overflow to a watercourse when treatment flow is below the
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storm overflow rate. Despite the flow passed to treatment being
essential to checking such compliance, there is typically no permit
requirement to record it and many WWTPs only record effluent
flow. Effluent flow is obviously closely related to flow passed to
treatment but may not be a legally acceptable surrogate for
validating compliance. Henceforth, we use ‘storm’ and ‘spill’ in
quotes to mean putative storm discharges detected by our flow
analysis but possibly undetected by EDM devices, storm tank
diversion alarms and even occurring during non-exceptional
rainfall.
We selected two WWTPs operated by the same water company

because of the variation in the population size served and the
availability of flow data. Summary attributes of WWTP1 and
WWTP2 are provided in Table 1, where anonymity has been
intentionally preserved. Responses to EIRs confirmed that both
WWTPs recorded only treated effluent flow and hence ruled out
direct validation of compliance with minimum treatment rates for
flow passed to treatment during spills. Monitoring Certification
Scheme (MCERTS) 15-min daily effluent flow patterns were
provided for 8000+ days over an 11-year period (2009–2020)
and EDM data defining spill intervals, also requested by EIR, for
900+ days (2018–2020).
Our objective was to develop techniques for analysing daily

flow patterns and EDM data that could detect spills of untreated
“storm tank overflow” discharges into watercourses. We believe
that the retrospective detection of such spills would benefit both
water companies and regulators as well as citizen and profes-
sional scientists interested in sewage-related pollution of water-
courses. We adopted a machine learning (ML) approach that used
flow patterns during EDM recorded storm tank overflow spills to
train pattern recognition algorithms to detect similar flow
patterns when the occurrence of wastewater discharges was
unreported or unknown. Artificial Intelligence (AI) techniques
based on explicit, symbolic representations of regulations and
legislation have been successfully developed and applied for
several decades13. The use of quantitative AI methods such as
Machine Learning and Pattern Recognition in regulatory com-
pliance checking is now receiving more attention as industry and
government accrue large databases accessible to lay, scientific
and regulatory scrutiny14,15. For example, ML techniques were
recently used to predict the likelihood of an organisation failing a
US government agency inspection of compliance with environ-
mental regulations16. The authors used a public database of
environmental enforcement and compliance (https://echo.epa.
gov/) to predict compliance based on location, industrial sector
and previous inspection history over 5 years.
As a precursor to the ML component of the study, we undertook

shape analysis of 3038 daily flow patterns from 2016 to 2020 to

identify a compact flow representation. Then, we used supervised
learning with 20 variations of standard ML algorithms on 917 flow
patterns from 2018 to 2020, with EDM data, to develop classifiers
able to discriminate between those affected and those unaffected
by untreated sewage spills. Optimal classifiers, one for each
WWTP, were subsequently verified in a semi-blinded manner on
2121 flows from 2016 to 2018 used for shape analysis of flow
patterns but not supervised learning. The classifiers were then
applied retrospectively, and fully blinded, to 5039 daily flow
patterns from 2009 to 2015 not used for shape analysis nor
supervised learning. Finally, publicly accessible rainfall, river flow
and river level data as well as telemetry alarm data, obtained
through EIR from the operator, were introduced to contextualise
and to corroborate potential ‘spill’ days identified by the statistical
or ML approaches and to inform discussion of compliance with EA
discharge permits.
The primary contribution of this study is the use of machine

learning models to detect unreported spills of untreated sewage
from wastewater treatment plants having previously trained the
models to determine relationships between known spilling
events and associated perturbations of effluent flow. The
addition of telemetry alarm and rainfall data enables waste
treatment plant operators and regulators to detect equipment
malfunction and permit non-compliance, respectively. Profes-
sional and citizen scientists also benefit from improved identi-
fication of putative spills that might affect their study of
potentially polluted watercourses.

RESULTS
Shape analysis of 3038 daily flow patterns (2016–2020) for
WWTP1 and WWTP2
An example effluent flow pattern for a 10-day period at WWTP1 is
shown in Fig. 1. EDM detected spilling intervals are overlaid to
demonstrate the flattening effect of spilling on the profile of the
flow pattern.
For WWTP1 (resp. WWTP2), EDM data were available for 446

(resp. 471) consecutive days for 2018–2020 during which
untreated sewage spill intervals of varying lengths had been
recorded. For each day, spill intervals were aggregated to the total
number of hours of discharge. Of the days used for machine
learning for WWTP1 (resp. WWTP2), 339 (resp. 346) involved no
EDM recorded spilling incidents and 107 (resp. 125) days had spills
with various lengths of which over a third were for 24-h. For
WWTP1 (resp. WWTP2), 97 (resp. 117) days with an aggregated
‘spill’ length of at least 3-h were labelled as ‘spill’ and 349 (resp.
354) with an aggregated ‘spill’ length of below 3-h as ‘normal’.
A 3-h aggregation period was selected because it guaranteed a

Table 1. Metadata for WWTP1 and WWTP2.

Operator ID WWTP1 WWTP2

Additional treatment None Phosphate removal

Population equivalent 7594 47,000

Type of flow data Effluent Effluent

3990 (01/09–03/20) 4083 (01/09–03/20)

Number of daily flow patterns available With EDM Without EDM With EDM Without EDM

446 3544 471 3612

Storm overflow rate (l/s) 50.52 240

Storm tank size (m3) Permit Actual Permit Actual

364 359 1728 2201

Storm tank overflow alarm data 01/09–03/20 01/09–03/20

Consented overflow level data 04/18–03/20 04/18–03/20

Daily flow patterns used for shape analysis 1511 1527
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reasonable number of ‘spill’ days on which to base the supervised
learning and preliminary attempts to predict spilling hours per day
were weakest for aggregated daily spills under 3-h. Where no EDM
data was available, days were labelled as ‘unknown’. The average
‘normal’ (blue line) and ‘spill’ (black line) daily flow patterns as a
proportion of storm overflow rates (red line) are shown in Fig. 2 for
each WWTP. The storm overflow rates mark the minimum flow
that should be treated before untreated sewage spills can be
made in compliance with EA permits to discharge to watercourses.
Separate shape models were generated for flow patterns from

2016 to 2020 for WWTP1 (n= 1511) and WWTP2 (n= 1527). The
first principle component of shape variation, PCA1, in both
models, is associated with magnitude, and temporal shifting of
morning flow peak (see Supplementary Video 1.mp4) as well as
“seasonal” changes related to daylight saving, public holidays and
vacation periods (Supplementary Fig. 1). Despite differences in the
population served by WWTP1 and WWTP2, Fig. 3a, b shows similar
distributions for scatter plots of PCA1 vs PCA2 for 2121 flows for
2016–2018 without EDM data. Analogous plots of PCA1 vs PCA2
for 917 flows for 2018–2020 with EDM data (Fig. 3c, d) suggest
that, for both WWTPs, PCA2 is correlated with shape difference
between ‘normal’ flow (open circles) and ‘spill’ affected flow (filled
triangles). This spill-related flattening is illustrated by morphing
the overall average daily flow pattern for WWTP1 between −1 and
+1 standard deviations of PCA2 (Supplementary Video 2.mp4).
Interestingly, the area under the receiver-operating characteristics
curve associated with using PCA2 alone for ‘normal’/’spill’
discrimination is 0.88 and 0.91 for WTTP1 and WWTP2, respec-
tively (this is the estimated probability of correctly classifying a
pair of flow patterns selected randomly, one each, from the
‘normal’ and ‘spill’ labelled subsets).

Supervised learning of the effect of sewage spills on 917
effluent flow patterns
The performance of 20-folded cross-validation of supervised
learning for labelled flow patterns for WWTP1 and WTTP2 is
shown in Supplementary Tables 3 and 4 for 20 support vector
machine (SVM) variations while retaining up to 15 PCA modes for
flow pattern synthesis. The number of PCA modes retained for
shape synthesis affects the validity of the reconstruction of each
daily flow pattern and hence classification accuracy. For the three
best-performing algorithms, Supplementary Fig. 2 shows the
variation in classification accuracy of daily flow patterns for
different numbers of retained PCA modes estimated as the
average area under the 20 receiver-operating characteristic curves
associated with the cross-validation folds. For the optimal
classifiers, the average area under the receiver-operating char-
acteristic curve was 0.97 for WTTP1 and 0.96 for WWTP2.
For verification, prior to wider application, the optimal ML

classifiers defined for each WWTP were used to reclassify the flow
patterns used in their derivation. Figure 4 shows these flow
patterns in contiguous temporal sequence with annotations for
each day reflecting EDM detected spill intervals (horizontal black
segments) and ML confirmation of ‘spill’ (unfilled gold circles).
During this period there were 97 (resp. 117) days with an EDM
confirmed aggregated spill of at least 3-h at WWTP1 (resp.
WWTP2). The agreement between optimal ML classification and
spill day labels derived from EDM data was extremely high
(WTTP1: sensitivity= 0.91, specificity= 0.95; WTTP2: sensitivity=
0.98, specificity= 0.98), as would be expected for such “training”
data.
Figure 4 also includes data from other alarms related to

untreated sewage discharges that have the potential to corrobo-
rate ML flow pattern classification for historical periods without

Fig. 1 WWTP1: example effluent flow pattern for 10 days annotated with EDM confirmed spilling intervals. A 24-h (midnight to midnight)
daily flow pattern of 96 15-min-interval average flow rates (litres/second) of treated effluent is shown in blue. The black horizontal, linear
annotations represent EDM recorded intervals denoting a discharge from a storm tank (i.e., consented spill or potentially unconsented spill of
untreated sewage), the shortest being 15min and the longest over 24-h. Total daily rainfall (mm/d) is provided in green. The first two days,
with no detected spills, show diurnal patterns of low flow between midnight (previous day) and the first peak after mid-morning, followed by
a lull until a second, smaller peak in the evening. The next seven days (15/12/18 through 21/12/18) involve spill intervals of various length
(black EDM line), showing a flattening of flow, which is typical of storm discharge during heavy rainfall. The last day shows elevated flows and
a partial return to a diurnal flow pattern with no spills reported.

Fig. 2 Average daily flow patterns. a WWTP1: black curve for ‘spill’ days (n= 97) and blue curve for ‘normal’ days (n= 349); b WWTP2: black
curve for ‘spill’ days (n= 117) and blue curve for ‘normal’ days (n= 354).
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EDM data. For WWTP1, there is near-perfect agreement (Cohen’s
kappa: 0.81–1.00) between the EDM, STO (Storm Tank Overflow)
and COL (Consented Overflow Level) alarms and ML classification
for Feb ‘19–Feb ‘20 (Fig. 4 and Table 2). For just two months, Dec
‘18 and Jan ‘19, the EDM and COL devices concur with near-
perfect agreement (Cohen’s kappa= 0.95), the STO device was
largely at odds (Cohen’s kappa ≤ 0), and the ML classifier flagged
incidents detected by all three. These results suggest that the STO
is a good candidate and the COL alarm is an excellent candidate
for corroborating ML detected putative spills at WWTP1 when
EDM data is unavailable.
For WWTP2, there is almost perfect agreement between EDM

and COL alarms (Cohen’s kappa= 0.87) and with ML classification
(Cohen’s kappa= 0.78) (Fig. 4 and Table 2). No STO alarm data
were provided for 2020 and between Dec ‘18 and Dec ‘19 STO
showed only chance agreement with other devices and the ML
classifier (Cohen’s kappa < 0.1). These results suggest that STO is
a poor candidate while COL is an excellent candidate for
corroborating ML detected putative spills at WWTP2 when EDM
data is unavailable.

Detection of spills in 7160 daily flow patterns (2009–2018) not
used to train ML algorithms
The classification of 2121 flow patterns from Jan 2016 to Nov 2018
was considered semi-blinded as they were used in shape analysis
but not in the ML “training”, whereas the 5039 flow patterns from
2009 to 2015 were classified fully blinded as they were not used in
either. Table 3 summarises the annual number of potential ‘spill’
days detected by the ML algorithms.
A subset of 327 ‘spill’ days detected by the ML analysis between

2009 and 2018 at WWTP1 were corroborated by STO or COL alarm
data. For the same period, a subset of 128 ‘spill’ days detected at
WWTP2 were corroborated by STO or COL alarm data. The COL
alarm corroborated all detected spills for which it was available
while the unreliability shown earlier for the STO alarm at
WWTP2 suggested an alternative approach to corroborate spills
detected by ML analysis. For both WWTPs, approximately three
additional months of flow and EDM data (87 days between March
7th 2020 to June 1st 2020) were available after the end of the ML
training data. This period was omitted from the original ML
training data because the daily flow volume at WWTP1 was zero or

Fig. 3 PCA1 vs PCA2 for daily flow patterns. Unknown spill status (grey filled circles); spill confirmed by EDM (filled black triangles);
confirmed as normal by EDM (unfilled grey circle) 2016–2018 without EDM data a WWTP1 (n= 1065); b WWTP2 (n= 1056); 2018–2020 with
EDM data c WWTP1 (n= 466); d WWTP2 (n= 471).
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less than 1% of expectation for more than 50% of the time and
hence unusable (Supplementary Fig. 12). Such data anomalies are
in any case a breach of the EA permit requirement that only
37 days in total in each year be missing or suspicious. However, it
was possible to perform blinded testing of the 87 daily flow
patterns from WWTP2 against the classification models con-
structed for Dec’ 2018–Mar'20 and demonstrate corroborative
agreement with the EDM data 93% of the time (Supplementary
Fig. 12).
When WWTP1 spilled untreated sewage, whether detected by

COL/EDM alarms or by ML classification, it typically did so at an
effluent flow rate that was considerably below the storm overflow

level (50.52 l/s) stipulated in its EA permit as the minimum flow
rate for continued treatment (pass forward flow or PFF). This can
also be seen in the 2018–2020 EDM monitored period. A
comparison of average ‘spill’ and ‘normal’ flow patterns (Fig. 2)
shows that the average effluent flow for ‘spill’ days at WWTP1 is
never above the storm overflow rate, whereas at WWTP2 it is
always above. Specifically, at WWTP1, 141 of 274 (51.5%) non-
aggregated (i.e. individual) spills detected by EDM at WWTP1 start
when the effluent rate is less than 80% of the storm overflow rate
compared to none at WWTP2 (Supplementary Fig. 11).
Due to the COVID-19 related lockdown from March 2020,

permits for both WWTPs valid for the period prior to 2018 could

Fig. 4 Daily effluent flow patterns and event duration monitor (EDM) detected spill intervals at WTTP1 and WWTP2 used as training data
(Dec'2018–Mar'2020). The daily flow and EDM spill data are measured at 15min intervals. Flow is coloured (orange/blue/pink) to distinguish
different years. Black horizontal lines delimit EDM detected spill intervals. Daily flows of aggregated spill length of at least/less than 3-h are
labelled as ‘spill’/‘normal’ prior to the supervised learning. Gold circles indicate days classified as ‘spill’ following the training of the machine
learning (ML) algorithms to produce an optimal classifier for each WWTP. The grey dashed line represents the storm overflow which defines
the minimum sewage flow that should be treated even during storm filling or overflow. Additional annotations are telemetry alarms provided
by the operator. These alarms have the potential to corroborate ML predictions of ‘spill’ days for the unseen flow patterns from 2009 to 2018
for which there is no EDM data. Similar charts showing the unseen ML classification of the 2009–2018 daily flow patterns overlaid with rainfall
and river level data are provided in Supplementary Figs 5–10.

Table 2. Agreement of ML classification, EDM, COL and STO alarms for the supervised learning.

Cohen’s kappa ML-EDM ML-COL EDM-COL STO-EDM STO-COL STO-ML

WWTP1 DEC'18 & JAN'19 0.53 0.57 0.95 −0.25 −0.24 0.00

FEB'19–MAR'20 0.87 0.87 1.00 0.93 0.93 0.81

WWTP2 DEC'18–MAR'20 0.78 0.78 0.87 N/A N/A N/A

DEC'18–DEC'19 N/A N/A N/A 0.03 0.07 0.06

Cohen’s kappa statistic measures agreement between two raters and is interpreted as follows: ≤0 no agreement; 0.01–0.20 none to slight, 0.21–0.40 fair,
0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 almost perfect.
EDM Event Duration Monitoring, ML Machine Learning, COL Consented Overflow Level, STO Storm Tank Overflow.

Table 3. Number of potential ‘spill’ days detected by machine learning.

Year Machine Learning (ML) for blinded testing Total aML/EDM for supervised learning

‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15 ‘16 ‘17 Jan’18–Nov/18 12/18–03/20

WWTP1 53 70 33 89 70 80 62 74 44 65 640 107/97

WWTP2 18 21 6 56 41 56 4 31 13 40 286 121/117

aMachine learning derived ‘spill’ days with an aggregated spill length of 3 or more hours. No EDM data for WWTP1 or WWTP2 was deemed reliable by the
operator prior to December 2018.
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not be provided in response to an EIR request to the Environment
Agency because they were not in electronic format and premises
were inaccessible. However, for both WWTPs, the current permits,
which include historical amendments, suggest that the storm
overflow settings have remained unaltered since before 2009. It
appears, therefore, that WWTP1 has been spilling ‘early’ for more
than 12 years whereas WWTP2 has rarely done so and, even then,
only marginally.

ML detection of isolated and contiguous series of 24-h spills
For each WWTP, the daily flow patterns detected by EDM or ML
analysis were ordered by the degree of flattening of the flow
pattern as measured by the standard deviation of the 96
constituent 15-min interval flow rates. For ML detected ‘spills’ at
WWTP1 without EDM data, the 20 most “flattened” daily effluent
flow patterns are compared in Fig. 5 to the average dry weather
flow. Each flow reflects persistent 24-h spilling at an effluent flow
between 60% and 80% of the minimum required. In contrast, the
twenty most “flattened” daily flows at WWTP2 without EDM data
have an effluent rate greater than or equal to the corresponding
storm overflow rate and so are likely to comply with the minimum
flow to treatment condition. Nevertheless, two of these “top
twenty” 24-h spills at WWTP2 in Fig. 5b, on 05/05/2012 and 12/05/
2012, occur on a rainless day following a dry previous 24-h.
Therefore, they are likely to be due to groundwater ingress which
the EA considers to be unpermitted. It is widely recognised that
groundwater ingress into sewer networks does occur, especially in
England where many sewerage networks have been in place for
more than 100 years (www.swig.org.uk/wp-content/uploads/2014/
10/David-Walters-2015.pdf; https://wwtonline.co.uk/news/thames-
water-trials-sewer-infiltration-survey-system; www.theguardian.
com/environment/2020/oct/09/oxford-stop-thames-water-firm-
dumping-sewage-river; www.southernwater.co.uk/help-advice/
sewers/combined-sewer-overflows-csos). It is difficult to obtain
groundwater level data for specific locations and for specific days
when spills have occurred. Moreover, the underlying geology for
the sewerage networks and sewage pumping stations (SPSs)
feeding the two WWTPs in this study varies quite considerably
without borehole data local to each SPS.
An isolated 24-h spill of untreated sewage covers a complete

diurnal sewage cycle and so includes the twin peaks of maximum
inflow when spilled sewage dilution is likely to be least and risk of
pollution damage greatest. But, worse still, is the pollution
potential caused by an unbroken series of 24-h untreated sewage
spills during which a receiving watercourse has no respite nor
opportunity to recover.
2009–2018 The ML analysis detected over 160 24-h spills at

WWTP1, of which 105 were corroborated by STO or COL alarm
alerts. Similarly, 200 24-h spills were detected at WWTP2. These

involved multiple examples of contiguous 24-h spills of more than
10 days.
At WWTP2, a notable near-continuous ‘spill’ of 60 days was

detected by the ML classifier between 21/12/2013 and 22/02/2014
(see Supplementary Figs 8 and 9). Extensive sewage fungus in the
receiving watercourse had been reported to the EA (27/01/2014
and 03/02/2014) by a member of the public before the EA visited
the works on 06/02/2014 to investigate. The EA Compliance
Assessment Report concluded that
“There is extensive sewage fungus over 1.5 km of watercourse

with a corresponding negative impact on the aquatic environ-
ment. Our fisheries and biodiversity teams are very concerned by
the impact which we have classified as an ongoing Category 2
incident”.
No prosecution was made. On more than 20 days during this

60-day spill, rainfall was below 2mm. Similar series of contiguous
24-h spills were detected by the ML analysis in 2012 (14 days),
2013 (16 days, 8 days), 2015–2016 (17 days). Each of these spills
also contained subseries of 2 or more consecutive days without
rainfall.
2018–2020 EIR requests established that in 2019,

WWTP1 spilled for over 1000 h on 72 days (mean: 15 h/spilling
day) including 21ML detected 24-h spills with contiguous series of
2–11 days; similarly, WWTP2 spilled for over 1390 h on 76 days
(mean: 18.3 h/spilling day) including 32ML detected 24-h spills
with multiple contiguous series of 2–14 days. A near-continuous
spill at WWTP2, for ~30 days in November 2019, included 14 days
during which, at most, 2 mm of rainfall had occurred (see Fig. 4).
As was the case in 2014, the spills resulted in extensive sewage
fungus that was reported to the EA by a member of the public
(Fig. 6).
These long spills and sewage fungal growth involved periods of

unexceptional rainfall. Our analysis suggests that, for at least nine
years, WWTP2 is likely to have been, and continues to be, subject
to groundwater ingress—a driver of sewage spills that the EA
considers to be unpermitted.

DISCUSSION
In England and Wales, there are ~17,000 combined sewer
overflows, all with the potential to discharge untreated sewage
to rivers and coastal waters. At WWTPs, such discharges have a
finite number of causes: excessive inflow due to rainfall or
infiltration, inadequate capacity, equipment malfunction, poor
maintenance and, occasionally, deliberate diversion from treat-
ment2,17–19. Despite considerable environmental regulation and
environmental impact, there remain gaps in our knowledge of the
frequency, volume, and polluting effects from untreated sewage
spills. The water industry self-reports sewage pollution incidents as
part of EA compliance checking and the annual performance

Fig. 5 The 20 daily effluent flows most flattened by 24-h spilling compared to the average daily dry. Weather flow For WWTP1, each spill
last 24-h during which the effluent rate is between 60% and 80% of the storm overflow rate. For WWTP2, in contrast, the effluent rate is at or
above the corresponding storm overflow rate. Also, two 24-h spills (5.5.12 and 12.5.12) are highlighted as “Dry Spills” because there was no
rainfall on the day they occurred nor on the previous day.
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review required by Ofwat, e.g., Thames Water20. Recognition of
under-reporting is acknowledged in the EA “Water and sewerage
companies’ performance: Annual report”1. Prior to our machine
learning approach, the only insight into the unreported ‘spills’
were those reported by the public, as many as 38% of sewage
‘spills’ in 2018, e.g., Anglian Water region9. In this manuscript, we
report 926 putative ‘spills’ as determined by ML in only two of the
3817 or so WWTPs in England1. Depending on the characteristics
of the receiving river and the weather, these might be highly
impactful discharges. It remains to be determined whether these
‘dark’ discharges (i.e., previously unknown) could help to explain
why 80% of surface water bodies in England are assigned a bad,
poor or moderate status classification within the Water Framework
Directive21.
We have shown that the machine learning approach developed

here can detect untreated sewage ‘spills’ retrospectively. This can
assist the water industry in identifying assets that need better
management, help regulatory bodies improve compliance check-
ing, and facilitate public oversight of WWTPs. The benefits of a
rapid, automated machine learning approach to reporting ‘spills’
would extend to catchment managers, conservation groups,
special interest groups (e.g., angling society), recreational users
and clubs (e.g., kayaking and open swimming), and consultants
and academics focused on modelling and measuring water quality
and wildlife health. The lack of data detailing the frequency and
length of ‘spills’ can impact society through the regulation of new
builds and the requisite planning permissions. A new housing/
commercial development can contribute substantially to the flow
in a sewage network and WWTP. As such, any new developments
within WWTP catchments that are already underperforming, will
further exacerbate the frequency and length of ‘spills’ and
constrain any progress made through other catchment manage-
ment initiatives, e.g., habitat restoration.
A potential inadequacy of the machine learning approach is its

reliance on a plentiful supply of accurate data. The introduction of
EDM devices at WWTPs has been relatively recent and according
to the operator of the WWTPs in this study they have required
repositioning at least once at all WWTPs for which we enquired.
This recommissioning disrupted, and limited the data collected
having implications for ML and corroborative analyses. With a
view to reusing EDM data, we cross-tested the flow pattern
classifiers induced from one WWTP on daily flow patterns of the
other after normalising to adjust for magnitude differences. The
classification results were not convincing and so, in future, it may
be that the approach taken in this study needs to be customised

to an individual WTTP or possibly class of WTTPs with similar
characteristics yet to be identified.
The ML approach presented here was only possible after a

protracted period of EIR submissions. There is no standard
protocol in England for making EIR requests to sewerage
companies for flow, EDM and alarm data. A written request is
required at one sewerage company, while others support
requests via email with subsequent electronic transmission or
data download. The statutory default period for fulfilling an EIR
request, in England and Wales, is 20 working days but this can be
doubled, in practice. Two UK sewerage companies have initiated
open, cloud-based access to modest amounts of flow and EDM
alarm data for its WWTPs and sewage pumping stations
(https://marketplace.wessexwater.co.uk/dataset; https://www.
southernwater.co.uk/our-performance/flow-and-spill-reporting).
The EA Public Register of permits relating to discharges to
watercourses offers minimal summary data online and acknowl-
edges requests with an anonymous, untagged email that
complicates follow-up unnecessarily. A PDF of a permit is usually
supplied within ten working days, but on receipt, might turn out
to be a generic amendment relating to several hundred sites
without details specific to the site of interest. Online perusal of
permits before immediate download would be a more practical
and effective approach.
EA permits allowing storm tank related discharges of untreated

sewage to watercourses stipulate that a minimum treatment flow
has to be attained even when a storm tank is filling or overflowing.
However, the permits do not require the flow sent to treatment to
be measured, recorded or reported. EIR requests to WWTP
operators have established that flow passed forward to treatment
is not routinely recorded as “permits do not require it”. Therefore,
it is unlikely that this permit condition has been easily verifiable
except by using treated effluent flow as a proxy.
As far as the authors are aware, there has not been a similar

study applying machine learning to wastewater treatment flow
patterns combined with rainfall and telemetry alarm data over a
long time series. Using EDM validated ‘storm’ discharge data and
treated effluent flow patterns for two contrastingly sized WWTPs,
we applied standard machine learning algorithms to construct
classifiers that performed exceptionally well at identifying spills
previously detected by EDM devices and reported under permit
obligation by the WWTP operator. Their application to 10
additional years of daily flow patterns, distinct from the training
data, identified 926 potential ‘spill’ days. The ML analysis has
provided insight into “early” non-compliant storm tank overflow
discharges between 2009 and 2018, revealing none at WWTP2 but
hundreds at WWTP1. ML analysis also detected many spills at
WWTP2 during periods of unexceptional rainfall suggesting that
groundwater ingress has been exacerbating untreated sewage
spills there for at least nine years. In 2012, the European
Commission ruled that the UK had failed to fulfil its obligation
under the Urban Wastewater Directive 91/271/EEC and that
untreated sewage discharges were only permitted in exceptional
circumstances. Furthermore, as a result of our analysis, there is
evidence to suggest that between 2009 and 2020 the rivers
downstream of WWTP1 and WWTP2 may have received more than
360 spills of untreated sewage lasting a whole day, often in
extensive contiguous series of more than 10 days.
The likely correlation between rainfall and spill occurrence

suggests its inclusion in ML studies. However, there is general
acceptance that groundwater infiltration contributes to increased
WWTP influent and consequent spills of untreated sewage.
Groundwater can be surprisingly delayed following rainfall and
so some spills would not be predicted by local rainfall or river level
alone. Moreover, WWTP2 in this study often treats all influent and
does not spill even when sewage flow exceeds its storm overflow
level. In this study, we have focused on WWTP treatment flow and
EDM data but plan to address the use of ML for more predictive

Fig. 6 Photograph of sewage fungus. Sewage fungus resulting
from 30 day spill of untreated sewage from WWTP2 in
November 2019.
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detection of untreated sewage spills from river quality parameters
gathered by multi-parameter sondes deployed upstream and
downstream of WWTPs.
From a technology transfer point of view, valuable lessons

were learned in the accumulation and analysis of large amounts
of multi-parameter data and marshalling of appropriate visuali-
sations to support interpretation and presentation of results.
Our experience and analysis methodology might be of use to
the sewerage industry and regulatory authorities. We hope the
results will help to improve WWTP management and compliance
oversight and, ultimately, contribute to a reduction in the
discharge of untreated sewage to rivers and coastal waters.

METHODS
Data related to discharges of untreated sewage and treated
effluent
Individual permits governing permitted discharges to watercourses were
obtained from the Public Register of the Environment Agency for England
and Wales (EA)22. In general, such permits determine:

1. Minimum sewage flow rate to be passed forward to treatment (PFF)
before a ‘storm’ discharge is permitted.

2. Capacity of storm tanks used to hold untreated sewage during
severe rainfall and/or snow melt.

3. Permitted discharge of untreated sewage to storm tanks due to
“rainfall and/or snow melt”.

4. Requirement for event duration monitoring (EDM) equipment to
record untreated sewage spills.

5. Quality standards for treated effluent.
6. Reporting frequency to the EA, by the WWTP operator, of effluent

quality, EDM and treated flow data.

Untreated sewage and treated effluent flow data
Through EIRs to the company managing WWTP1 and WWTP2, we obtained
“Monitoring emissions to air, land and water Certification Scheme”
(MCERTS) treated effluent flow data for 2009–2020. The data were
provided as.csv files of time-stamped average flows for 15-min intervals
in litres or m3 per second. Very occasionally, a whole or significant part of a
day’s flow was missing. Such days were excluded from analysis but where
data was complete, the pattern of 15-min interval daily flow comprised
96 values. The total number of flow values available for analysis, covering
both WWTPs, was about 800,000 corresponding to more than 8000 daily
flow patterns. An extract of such MCERTS 15-min treated effluent flow data
is provided in Supplementary Table 1.

Data analysis protocol

1. Build shape model from daily flow patterns for 2016–2020 with and
without EDM data.

2. Build classifiers using supervised learning on 2018–2020 flow
patterns with EDM data.
Select optimal classifier and verify semi-blinded on 2016–2018

flow patterns without EDM data.
3. Test optimal classifier retrospectively and fully blinded on flow

patterns for 2009–2015.

Rainfall and river levels
Heavy rainfall and snow melt can have a deleterious effect on wastewater
treatment through surface water runoff causing overload at a WWTP inlet.
The EA allows for this by permitting excess raw sewage above a specified
overflow rate to be diverted to a storm tank which, when full, is permitted
to spill to the linked watercourse. The UK Environment Agency regulations
state that a “storm tank must settle out solids and have a minimum capacity
of 68 litres/population head served or a storage equivalent of 2 hours at the
maximum flow rate to the storm tanks”23. During some storm sewage spills,
rivers in full spate may further dilute combined discharges of untreated
sewage and surface water runoff. In anticipation of checking the ML
classification of daily flows as involving sewage spills, we obtained average
daily rainfall, river flows and/or river levels, when available, through

publicly accessible sources (www.accuweather.com/; https://nrfa.ceh.ac.uk/;
https://riverlevels.uk/). More detail is provided in the supplementary
information.

Telemetry communications between WWTPs and Waste
Operating Control Centre
In order to identify discharges of untreated sewage to watercourses, EIRs
were made to the sewerage company for EDM records and telemetry
alarm exchanges between each WWTP and the company’s Waste
Operating Control Centre (WOCC). These were supplied as.csv files
cataloguing times/dates of untreated discharges; WWTP id; times/dates
of alarm messages; level of alarm severity (reflecting internal company
standards for associated minimum response and intervention times);
message source (e.g. equipment/device/asset involved); state or change of
state of device involved.
Particularly relevant are alarms for storm tanks and EDM devices

installed on storm overflows. The consented overflow alarm (COL)
measures the level of untreated sewage diverted to a storm tank for
which the EDM detects intervals of overflow to the receiving watercourse.
As would be expected COL and EDM are closely correlated and as COL was
installed before EDM at both WWTPs it is a reasonable surrogate to use
when EDM is unavailable to corroborate potential ‘spill’ days detected by
ML classification. Illustrative extracts of such data are provided in
Supplementary Table 2.

Flow shape analysis
The shape analysis methods and associated software used in this study
were developed over the last two decades and have been applied
extensively to the detection of shape differences in 3D surfaces, notably
those representing anatomical structures. So, rather than redevelop the
software, each daily flow ‘curve’ of 96 15-min interval values was converted
automatically to a thin flow ‘ribbon’ comprising 190 triangular facets
annotated (automatically) with 192 landmarks (Supplementary Fig. 3) to
enable correspondence to be established between the daily flow patterns
for which a shape model is computed.
A dense surface model (DSM) of a set of landmarked surfaces, described

in detail elsewhere24,25, comprises shape variation modes arising from a
principal component analysis (PCA) of differences of the surface points’
positions from those of the average surface in the dataset. Prior to the PCA,
using a completely flat “base” flow ribbon, a dense correspondence of
surface points across all flow ribbons is induced with no manual
interaction. During the shape model building, the PCA modes are
computed in terms of decreasing variance coverage (defined as the ratio
of the eigenvalue corresponding to a PCA mode to the sum of all
eigenvalues of the diagonalised covariance matrix). Sufficient modes in the
dense surface model were retained to cover 99% of shape variance. The
effluent flow data acquired for each WWTP, for daily flow patterns from
2016 to 2020, were used to build separate dense surface models of
flow shape.

Supervised learning for identifying daily flow patterns
associated with sewage spills
As for the shape analysis described above, software employed in this paper
incorporates supervised learning techniques for building classifiers for
shape discrimination and has been used in a wide range of neurofacial
applications: altered face shape in genetic syndromes26; premature skull
fusion27; tissue engineering of face-skull shape28; facial asymmetry
associated with epilepsy29 and early childhood cancer30; and, correlated
face-brain shape changes arising from foetal alcohol exposure during
pregnancy31.
The WWTP operator reported that during an initial period of installation

EDM results were unreliable and both devices were recommissioned in
Nov/Dec 2018. For this reason, EDM results for both WWTPs earlier than
the recommissioning date were excluded from ML analysis.
The supervised learning used the classical ML technique of Support

Vector Machines (SVM). The neural network based SVM, or large margin
classifier, approach focuses on individual cases in the overlap of the
subgroups to be classified that help to define a separating surface with
largest margin between the subgroups. The SVM-based classification here
employed a radial basis function kernel with 5 heuristics for determining
margin width (Hinton; median separation; mean separation; Jaakkola;
Jaakkola-mean), each with 4 parametric variations. Thus, 20 variations of
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“machine learning” algorithms were used to construct flow pattern
classifiers for each WWTP.
To estimate the accuracy of each variation, and to avoid overfitting,

we used 20-folded cross validation 90%-10% training-test set splits of
stratified, randomly selected subsets of the ‘spill’ and ‘normal’ labelled
flow patterns and after classification estimated the overall classification
accuracy as the mean area under the corresponding receiver-operator
characteristic curves of the 20 splits. For each SVM variation, a final
classification was ‘spill’ if the lower value of a 95% confidence interval
(CI) for the estimated classification was positive. The best-performing
combination of SVM kernels (median, Jaakkola and Jaakkola-mean for
both plants) and number of PCA modes (2 for WWTP1 and 10 for
WTTP2) were identified (see Supplementary Tables 3 and 4 for complete
results). For the classification testing, we adopted a conservative
approach and defined an optimal classifier that labelled a flow pattern
as ‘spill’ if and only if these three best-performing algorithms all
classified it as ‘spill’.

Corroboration of ML classification of historic pre-EDM flow
patterns with telemetry alarms devices
Supervised learning was used to produce classifiers from flow patterns
labelled as ‘spill’ or ‘normal’ using spilling interval data provided by the
WTTP operator and detected by EDM devices during Dec ‘18 to Mar’2020.
Without the availability of EDM detected spilling intervals for the period
January 2009 to early 2018, there is apparently no “gold standard” with
which to compare and hence validate the ML based classification of flow
patterns. However, both WWTPs were fitted with other devices that could be
used to corroborate ML “predictions”. For example, shortly before EDM
installation (WWTP1: Nov ‘17; WWTP2: Feb ‘18), both WWTPs were fitted with
analogue “Consented Overflow Level” (COL) alarms recording both sewage
level in storm tanks monitored by EDM and sending raised/cleared
messages to a central control centre. When asked, through an EIR, for data
for a “storm tank filling” alarm deployed in many WWTPs, the operator
reported no such device to be in use but provided data for a “Storm Tank
Overflow” alarm (STO) used at WWTP1 throughout the study period
employing the less reliable float switch technology. A similarly named alarm
was also in use at WWTP2.

Detection of isolated and contiguous series of 24-h spills
Sewage spills vary considerably in length but typically feature a flattening of
flow pattern due to the diversion of excess flow via a storm tank or directly
to a river. This reduces variation about the mean of the individual 15-min
flow rates representing either the flow passed forward or the treated
effluent. As a result, a flow pattern associated with a compliant storm
discharge of 24-h (or more) often has a low standard deviation and a mean
close to, if not above, the storm overflow rate specified in a discharge
permit. 24-h spills with a mean flow much less than the storm overflow rate
are potentially non-compliant with the minimum PFF permit condition. A
long contiguous series of 24-h spills inhibits recovery from sewage exposure
and is more likely to result in sewage fungus pollution that is harmful to
both fish and macroinvertebrates32. Short spills, much less than a day in
length, may coincide with low flow periods in the typical diurnal pattern of
wastewater generation and potentially cause less significant pollution or at
least allow recovery. However, even short spills can be extremely polluting in
their first flush if storm tanks contain settled solids of previous spills because
they have not been emptied in a timely manner.

DATA AVAILABILITY
All data needed to evaluate the conclusion in this paper are presented in the paper
and/or the Supplementary Materials. Additional data related to this paper may be
requested from the authors.

SOFTWARE AVAILABILITY
The analysis undertaken in this study was implemented using support vector
machine learning components downloaded from the Visualization Toolkit (VTK)
library which is freely available from https://vtk.org/.
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